4: K-Means Clustering - Deepstash
4: K-Means Clustering

4: K-Means Clustering

K-Means Clustering has become the most popular implementation of this approach, shepherding data points into distinctive ‘K Groups’, which may indicate demographic sectors, online communities, or any other possible secret aggregation waiting to be discovered in raw statistical data.

Outside of this application, K-Means Clustering is also employed for landslide prediction, medical image segmentation, image synthesis with GANs, document classification, and city planning, among many other potential and actual uses.

149

323 reads

CURATED FROM

IDEAS CURATED BY

The Math Of Machine Learning

The idea is part of this collection:

Introduction to Web 3.0

Learn more about computerscience with this collection

The differences between Web 2.0 and Web 3.0

The future of the internet

Understanding the potential of Web 3.0

Related collections

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates