Random Forest is an ensemble learning method that averages the result from an array of decision trees to establish an overall prediction for the outcome.
As with many of the algorithms in this list, Random Forest typically operates as an ‘early’ sorter and filter of data, and as such consistently crops up in new research papers. Some examples of Random Forest usage include Magnetic Resonance Image Synthesis, Bitcoin price prediction, census segmentation, text classification and credit card fraud detection.
149
316 reads
CURATED FROM
IDEAS CURATED BY
The Math Of Machine Learning
“
The idea is part of this collection:
Learn more about computerscience with this collection
The differences between Web 2.0 and Web 3.0
The future of the internet
Understanding the potential of Web 3.0
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates