What is an A/B Test? - Deepstash
What is an A/B Test?

What is an A/B Test?

Curated from: netflixtechblog.com

Ideas, facts & insights covering these topics:

6 ideas

·

128 reads

1

Explore the World's Best Ideas

Join today and uncover 100+ curated journeys from 50+ topics. Unlock access to our mobile app with extensive features.

Running controlled experiments: A/B Testing

At Netflix, running A/B tests, where possible, allows us to substantiate causality and confidently make changes to the product knowing that our members have voted for them with their actions.

An A/B test starts with an idea — some change we can make to the UI, the personalization systems that help members find content, the signup flow for new members, or any other part of the Netflix experience that we believe will produce a positive result for our members.

5

63 reads

A/B Testing on Netflix: Upside Down Boxes

To run the experiment, we take a subset of our members, usually a simple random sample, and then use random assignment to evenly split that sample into two groups. Group “A,” often called the “control group,” continues to receive the base Netflix UI experience, while Group “B,” often called the “treatment group”, receives a different experience, based on a specific hypothesis about improving the member experience (more on those hypotheses below). Here, Group B receives the Upside Down box art.

5

16 reads

Controlled Experiment results

With many experiments, including the Upside Down box art example, we need to think carefully about what our metrics are telling us. Suppose we look at the click-through rate, measuring the fraction of members in each experience that clicked on a title. This metric alone may be a misleading measure of whether this new UI is a success, as members might click on a title in the Upside Down product experience only in order to read it more easily.

5

13 reads

Everything Else is Constant

Because we create our control (“A”) and treatment (“B”) groups using random assignment, we can ensure that individuals in the two groups are, on average, balanced on all dimensions that may be meaningful to the test. Random assignment ensures, for example, that the average length of Netflix membership is not markedly different between the control and treatment groups, nor are content preferences, primary language selections, and so forth. 

5

16 reads

Causal Connections

A/B tests let us make causal statements. We’ve introduced the Upside Down product experience to Group B only, and because we’ve randomly assigned members to groups A and B, everything else is held constant between the two groups. We can therefore conclude with high probability (more on the details next time) that the Upside Down product caused the reduction in engagement.

5

9 reads

The Top 10 Experiment

With the Top 10 example, the hypothesis read: “Showing members the Top 10 experience will help them find something to watch, increasing member joy and satisfaction.” The primary decision metric for this test (and many others) is a measure of member engagement with Netflix: are the ideas we are testing helping our members to choose Netflix as their entertainment destination on any given night? Our research shows that this metric (details omitted) is correlated, in the long term, with the probability that members will retain their subscriptions.

5

11 reads

IDEAS CURATED BY

jaszyy

"Time was God's first creation. " ~ Walter Lang

Similar ideas

Decision Making at Netflix

5 ideas

Decision Making at Netflix

netflixtechblog.com

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates