Transparency + Context = Explainability - Deepstash

Transparency + Context = Explainability

Transparency allows modellers, developers, and technical auditors to understand how an AI system works, including how a model is trained and evaluated, what its decision boundaries are, what inputs go into the model, and finally, why it made a specific prediction. This is often also described as “interpretability” in existing research.

Explainable AI (XAI) goes a step further by explaining how a system works or why a particular recommendation was made to members and customers.

3

7 reads

CURATED FROM

IDEAS CURATED BY

brianadam

Multimedia specialist

The idea is part of this collection:

Machine Learning With Google

Learn more about computerscience with this collection

Understanding machine learning models

Improving data analysis and decision-making

How Google uses logic in machine learning

Related collections

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates