CNN works primarily by stacking the convolution and pooling layers. The convolution layer uses linear combinations between surrounding pixels to find new hidden data. The pooling layer shrinks the feature map, lowering the learning resources required and preventing overfitting.
The classification result is obtained using the fully connected layer after the data size has been reduced sufficiently by repeatedly applying these layers. For better results, the loss between the acquired label and the actual label can be used to train the model using a gradient descent method or other optimizers.
8
45 reads
CURATED FROM
IDEAS CURATED BY
卐 || एकं सत विप्रा बहुधा वदन्ति || Enthusiast || Collection Of Some Best Reads || Decentralizing...
The idea is part of this collection:
Learn more about personaldevelopment with this collection
How to showcase your skills and experience
How to answer common interview questions
How to make a good first impression
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates