ML-fairness-gym as a Simulation Tool for Long-Term Analysis - Deepstash

ML-fairness-gym as a Simulation Tool for Long-Term Analysis

The ML-fairness-gym simulates sequential decision making using Open AI’s Gym framework. In this framework, agents interact with simulated environments in a loop. At each step, an agent chooses an action that then affects the environment’s state. The environment then reveals an observation that the agent uses to inform its subsequent actions. In this framework, environments model the system and dynamics of the problem and observations serve as data to the agent, which can be encoded as a machine learning system.

18

196 reads

The idea is part of this collection:

Machine Learning With Google

Learn more about artificialintelligence with this collection

Understanding machine learning models

Improving data analysis and decision-making

How Google uses logic in machine learning

Related collections

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates