The Results - Deepstash

The Results

Our long-term analysis found two results. First, as found by Liu et al., the equal opportunity agent (EO agent) overlends to the disadvantaged group (group 2, which initially has a lower average credit score) by sometimes applying a lower threshold for the group than would be applied by the max reward agent.

Second, equal opportunity constraints — enforcing equalized TPR between groups at each step — does not equalize TPR in aggregate over the simulation.

16

188 reads

The idea is part of this collection:

Machine Learning With Google

Learn more about artificialintelligence with this collection

Understanding machine learning models

Improving data analysis and decision-making

How Google uses logic in machine learning

Related collections

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates