Our paper extends the analysis of two other scenarios that have been previously studied in the academic ML fairness literature. The ML-fairness-gym framework is also flexible enough to simulate and explore problems where “fairness” is under-explored. For example, in a supporting paper, “Fair treatment allocations in social networks,” we explore a stylized version of epidemic control, which we call the precision disease control problem, to better understand notions of fairness across individuals and communities in a social network.
19
191 reads
The idea is part of this collection:
Learn more about artificialintelligence with this collection
Understanding machine learning models
Improving data analysis and decision-making
How Google uses logic in machine learning
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates