Most practitioners use summary metrics (for example, mean, median, standard deviation, and so on) to communicate about distributions.
However, you should usually examine much richer distribution representations by generating histograms, cumulative distribution functions (CDFs), Quantile-Quantile (Q-Q) plots, and so on. These richer representations allow you to detect important features of the data, such as multimodal behavior or a significant class of outliers.
256
1.57K reads
The idea is part of this collection:
Learn more about artificialintelligence with this collection
Understanding machine learning models
Improving data analysis and decision-making
How Google uses logic in machine learning
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates