Before looking at any data, make sure you understand the context in which the data was collected. If the data comes from an experiment, look at the configuration of the experiment. If it's from new client instrumentation, make sure you have at least a rough understanding of how the data is collected.
You may spot unusual/bad configurations or population restrictions (such as valid data only for Chrome). Anything notable here may help you build and verify theories later.
210
488 reads
The idea is part of this collection:
Learn more about artificialintelligence with this collection
Understanding machine learning models
Improving data analysis and decision-making
How Google uses logic in machine learning
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates