Both slicing and consistency over time are particular examples of checking for reproducibility. If a phenomenon is important and meaningful, you should see it across different user populations and time. But verifying reproducibility means more than performing these two checks. If you are building models of the data, you want those models to be stable across small perturbations in the underlying data.
If a model is not reproducible, you are probably not capturing something fundamental about the underlying process that produced the data.
211
393 reads
The idea is part of this collection:
Learn more about artificialintelligence with this collection
Understanding machine learning models
Improving data analysis and decision-making
How Google uses logic in machine learning
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates