The ML workflow - Deepstash
The ML workflow

The ML workflow

To develop and manage a production-ready model, you must work through the following stages:

  • Source and prepare your data.
  • Develop your model.
  • Train an ML model on your data:

  • Train model

  • Evaluate model accuracy
  • Tune hyperparameters

  • Deploy your trained model.

  • Send prediction requests to your model:

  • Online prediction

  • Batch prediction

  • Monitor the predictions on an ongoing basis.

  • Manage your models and model versions.

These stages are iterative. You may need to reevaluate and go back to a previous step at any point in the process.

278

2.2K reads

CURATED FROM

IDEAS CURATED BY

leverett

Improving myslef every day.

The idea is part of this collection:

Machine Learning With Google

Learn more about artificialintelligence with this collection

Understanding machine learning models

Improving data analysis and decision-making

How Google uses logic in machine learning

Related collections

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates