Transfer learning concept - Deepstash

Transfer learning concept

The biggest problem, thoug h, is that models like this one are performed only on a single task. Future tasks require a new set of data points as well as equal or more amount of resources.

Transfer learning is an approach in deep learning (and machine learning) where knowledge is transferred from one model to another.

Deep learning models require a LOT of data for solving a task effectively. However, it is not often the case that so much data is available. For example, a company may wish to build a very specific spam filter to its internal communication system but does not possess lots of labelled data.

What you can do is using a pre-trained image classifier on dog photos to predict cat photos.

14 STASHED

Deepstash helps you become inspired, wiser and productive, through bite-sized ideas from the best articles, books and videos out there.

GET THE APP:

RELATED IDEAS

Transfer learning is how humans use knowledge of one thing to help understand something else, for example to humans a umbrella can be used to stop rain hitting you, but it also can be used to keep the sun of you. Getting a AI to put these connections together is one of the steps towards general Intelligence, and that's where transfer learning comes in.

Transfer learning looks at the weights, biases or artitecture of the deep learning model and saves them to them transfer to another model,

22 STASHED

12 LIKES

Transfer learning consists of taking features learned on one problem, and leveraging them on a new, similar problem. For instance, features from a model that has learned to identify racoons may be useful to kick-start a model meant to identify tanukis.

  1. Take layers from a previously trained model.
  2. Freeze them, so as to avoid destroying any of the information they contain during future training rounds.
  3. Add some new, trainable layers on top of the frozen layers. They will learn to turn the old features into predictions on a new dataset.
  4. Train the new layers on your dataset.

Layers & models have three weight attributes:

  • weights is the list of all weights variables of the layer.
  • trainable_weights is the list of those that are meant to be updated (via gradient descent) to minimize the loss during training.
  • non_trainable_weights is the list of those that aren't meant to be trained. Typically they are updated by the model during the forward pass.

7 STASHED

Dynamic programming languages like Python and TypeScript allows developers to optionally define type annotations and benefit from the advantages of static typing such as better code completion, early bug detection.

However, retrofitting types is a cumbersome and error-prone process. To address this, we propose Type4Py , an ML-based type auto-completion for Python. It assists developers to gradually add type annotations to their codebases. In the following, I describe Type4Py’s pipeline, model, deployments, and the development of its VSCode extension and more.

3 STASHED