Transfer learning concept - Deepstash

Transfer learning concept

The biggest problem, thoug h, is that models like this one are performed only on a single task. Future tasks require a new set of data points as well as equal or more amount of resources.

Transfer learning is an approach in deep learning (and machine learning) where knowledge is transferred from one model to another.

Deep learning models require a LOT of data for solving a task effectively. However, it is not often the case that so much data is available. For example, a company may wish to build a very specific spam filter to its internal communication system but does not possess lots of labelled data.

What you can do is using a pre-trained image classifier on dog photos to predict cat photos.

18

176 reads

CURATED FROM

IDEAS CURATED BY

samuelbancroft

Keep reading, keep studying, the more you learn the more you change. If you are doing the Python lessons please join this discord channel https://discord.gg/kugXx9KY but please follow the rules

The idea is part of this collection:

Machine Learning With Google

Learn more about artificialintelligence with this collection

Understanding machine learning models

Improving data analysis and decision-making

How Google uses logic in machine learning

Related collections

Similar ideas to Transfer learning concept

Transfer learning and fine tuning

Transfer learning consists of taking features learned on one problem, and leveraging them on a new, similar problem. For instance, features from a model that has learned to identify racoons may be useful to kick-start a model meant to identify tanukis.

  1. Take layers from...

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates