Transfer learning and fine tuning - Deepstash

Transfer learning and fine tuning

Transfer learning consists of taking features learned on one problem, and leveraging them on a new, similar problem. For instance, features from a model that has learned to identify racoons may be useful to kick-start a model meant to identify tanukis.

  1. Take layers from a previously trained model.
  2. Freeze them, so as to avoid destroying any of the information they contain during future training rounds.
  3. Add some new, trainable layers on top of the frozen layers. They will learn to turn the old features into predictions on a new dataset.
  4. Train the new layers on your dataset.

Layers & models have three weight attributes:

  • weights is the list of all weights variables of the layer.
  • trainable_weights is the list of those that are meant to be updated (via gradient descent) to minimize the loss during training.
  • non_trainable_weights is the list of those that aren't meant to be trained. Typically they are updated by the model during the forward pass.

7

22 reads

CURATED FROM

IDEAS CURATED BY

samuelbancroft

Keep reading, keep studying, the more you learn the more you change. If you are doing the Python lessons please join this discord channel https://discord.gg/kugXx9KY but please follow the rules

The idea is part of this collection:

Mood Boosters: Put Yourself in a Happy Mood

Learn more about personaldevelopment with this collection

The power of gratitude and positive thinking

Ways to improve your mood

Simple daily habits for a happier life

Related collections

Similar ideas to Transfer learning and fine tuning

Transfer learning concept

The biggest problem, thoug h, is that models like this one are performed only on a single task. Future tasks require a new set of data points as well as equal or more amount of resources.

Transfer learning is an approach in deep learning (and machine learning) where knowledge is ...

Re-learning the Toddler's version of trial and error

Re-learning the Toddler's version of trial and error

Toddlers constantly try new things, unconcerned with failure. When they learn to walk, they don't think about how dumb they might look if they fall and the parents wouldn't punish them if they waren't successful either. The focus is always on the end goal, and the wins are always celebrated.

Responsible AI and the employee experience

Organizations must recognize the drawbacks that some algorithms bring into the screening and hiring process as a result of the way they are trained, which can have a direct impact on outcomes such as diversity and inclusion. 

  • When it comes to reskilling and retaining employees, AI can ...

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Personalized microlearning

100+ Learning Journeys

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates