Bonus Challenge: Multiple data-centers - Deepstash
Machine Learning With Google

Learn more about computerscience with this collection

Understanding machine learning models

Improving data analysis and decision-making

How Google uses logic in machine learning

Machine Learning With Google

Discover 95 similar ideas in

It takes just

14 mins to read

Bonus Challenge: Multiple data-centers

Bonus Challenge: Multiple data-centers

Expanding to other regions requires two steps:

  1. Replicate the setup in each data-center.
  2. Have the Dispatcher broadcast the events to its peer Dispatchers from the other data-centers.

8

59 reads

MORE IDEAS ON THIS

Challenge 2: Connection Management

Challenge 2: Connection Management

  • Each connection is managed by an Akka actor.
  • Actors are so lightweight that there can be millions of them on a single system. Moreover, all of them can be served by a small number of threads, proportional to the number of cores. This...

8

44 reads

Challenge 3: Multiple Live Videos

Challenge 3: Multiple Live Videos

  • Clients are subscribing to events for a particular live video i.e. they are telling the server which live video they are watching.
  • The Frontend server stores all subscriptions in an in-memory table.
  • Every time a new event is published, the su...

8

61 reads

Final architecture

Final architecture

  1. A viewer likes a video and sends an HTTP request to the Likes backend, which stores it in a database.
  2. The backend forwards the like to any random Dispatcher node using an HTTP request.
  3. Dispatcher looks up in the key-value store to find out which Frontend nodes are subscribed ...

12

315 reads

Interactive Live Videos

Interactive Live Videos

Having a lot of people interact on live videos poses many technical challenges. Mainly because viewers generate a lot of interactions that need to be delivered fast.

To get a sense of the scale, the top live streams in the world gathered millions of concurrent users:

8

121 reads

The Realtime Platform

The Realtime Platform

LinkedIn has built the Realtime Platform to distribute multiple types of data in real-time such as:

  • Likes, comments and viewer count for Live Videos
  • Typing indicators and Read receipts for Instant Messaging
  • Presence i.e. the green online indicators
  • ...

7

118 reads

Related posts

Related posts

  • How LinkedIn displays Presence indicators in real-time: https://engineering.linkedin.com/blog/2018/01/now-you-see-me--now-you-dont--linkedins-real-time-presence-platf
  • How LinkedIn measures end-to-end latency across systems: https://engineering.linked...

10

206 reads

Challenge 4: 10K Concurrent Viewers

Challenge 4: 10K Concurrent Viewers

  • Scale horizontally to handle more concurrent viewers -> Add multiple Frontend nodes and coordinate them using a Dispatcher node.
  • In a similar fashion to the Frontend node, the Dispatcher has a subscriptions table to know which frontend nodes should r...

9

54 reads

Challenge 1: The Delivery Pipe

Challenge 1: The Delivery Pipe

  • User devices have a persistent connection to the Realtime Platform servers.
  • The servers use server-sent events to stream data fast on this connection via the EventSource interface.

A persistent connection is an HTTP L...

8

87 reads

Challenge 5: 100 Likes/second

Challenge 5: 100 Likes/second

  • Scale horizontally again to handle more events -> Add multiple Dispatchers and move the subscription table into a key-value store so it's accessible to all Dispatchers.
  • Dispatchers are independent from Frontend nodes and don't have persistent connect...

9

76 reads

Performance and scale

Performance and scale

  • Each Frontend node handles 100k persistent connections. It handles only this many connections because the server is doing a lot of work processing multiple types of data (likes, comments, instant messaging etc.).
  • Each Dispatcher can publish 5k events per seco...

8

49 reads

CURATED FROM

CURATED BY

ocpodariu

Alt account of @ocp. I use it to stash ideas about software engineering

Related collections

More like this

Performance and scale

Performance and scale

  • Each Frontend node handles 100k persistent connections. It handles only this many connections because the server is doing a lot of work processing multiple types of data (likes, comments, instant messaging etc.).
  • Each Dispatcher can publish 5k events per seco...

Setting up the feedback loop for the problem statements.

Once the teams have generated a few problem statements, each member should vote on one problem statement that best refects the needs discovered from the data analysis process.

It’s recommended that teams employ the technique of dotmocracy, where each member of the team has two votes. Each m...

The Search For The Beauty Center

The brain, according to scientists, has a ‘beauty center’ which works in tandem with the other areas like the pleasure center, memory center, or visual center, with many functions complementing each other.

New, extensive studies show that beautiful visuals or faces have si...

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving & library

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Personalized recommendations

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates