Explore the World's Best Ideas
Join today and uncover 100+ curated journeys from 50+ topics. Unlock access to our mobile app with extensive features.
An enzyme variant created by engineers and scientists can break down environment-throttling plastics that typically take centuries to degrade in just a matter of hours to days.
5
55 reads
This discovery, published today in Nature, could help solve one of the world's most pressing environmental problems: what to do with the billions of tons of plastic waste piling up in landfills and polluting our natural lands and water. The enzyme has the potential to supercharge recycling on a large scale that would allow major industries to reduce their environmental impact by recovering and reusing plastics at the molecular level.
4
36 reads
"The possibilities are endless across industries to leverage this leading-edge recycling process," said Hal Alper, professor in the McKetta Department of Chemical Engineering at UT Austin. "Beyond the obvious waste management industry, this also provides corporations from every sector the opportunity to take a lead in recycling their products. Through these more sustainable enzyme approaches, we can begin to envision a true circular plastics economy."
3
33 reads
The project focuses on polyethylene terephthalate (PET), a significant polymer found in most consumer packaging, including cookie containers, soda bottles, fruit and salad packaging, and certain fibers and textiles. It makes up 12% of all global waste.
3
33 reads
Researchers at the Cockrell School of Engineering and College of Natural Sciences used a machine learning model to generate novel mutations to a natural enzyme called PETase that allows bacteria to degrade PET plastics. The model predicts which mutations in these enzymes would accomplish the goal of quickly depolymerizing post-consumer waste plastic at low temperatures.
3
26 reads
Through this process, which included studying 51 different post-consumer plastic containers, five different polyester fibers and fabrics, and water bottles all made from PET, the researchers proved the effectiveness of the enzyme, which they are calling FAST-PETase (functional, active, stable, and tolerant PETase).
3
23 reads
"This work really demonstrates the power of bringing together different disciplines, from synthetic biology to chemical engineering to artificial intelligence," said Andrew Ellington, professor in the Center for Systems and Synthetic Biology whose team led the development of the machine learning model.
3
21 reads
Recycling is the most obvious way to cut down on plastic waste. But globally, less than 10% of all plastic has been recycled. The most common method for disposing of plastic, besides throwing it in a landfill, is to burn it, which is costly, energy-intensive, and spews noxious gas into the air. Other alternative industrial processes include very energy-intensive processes of glycolysis, pyrolysis, and/or methanolysis.
3
19 reads
Research on enzymes for plastic recycling has advanced during the past 15 years. However, until now, no one had been able to figure out how to make enzymes that could operate efficiently at low temperatures to make them both portable and affordable at a large industrial scale. FAST-PETase can perform the process at less than 50 degrees Celsius.
3
21 reads
Up next, the team plans to work on scaling up enzyme production to prepare for industrial and environmental applications. The researchers have filed a patent application for the technology and are eying several different uses. Cleaning up landfills and greening high waste-producing industries are the most obvious. But another key potential use is environmental remediation. The team is looking at a number of ways to get the enzymes out into the field to clean up polluted sites.
3
21 reads
IDEAS CURATED BY
CURATOR'S NOTE
You guys have to know this. Opinions are always welcome.
“
Learn more about scienceandnature with this collection
The differences between Web 2.0 and Web 3.0
The future of the internet
Understanding the potential of Web 3.0
Related collections
Similar ideas
5 ideas
Healthy Eating Habits
Beth Bence Reinke
12 ideas
Healthy Eating for Runners - Well Guides
nytimes.com
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates