During training, you apply the model to known data to adjust the settings to improve the results. When your results are good enough for the needs of your application, you should deploy the model to whatever system your application uses and test it.
To test your model, run data through it in a context as close as possible to your final application and your production infrastructure.
Use a different dataset from those used for training and evaluation. Ideally, you should use a separate set of data each time you test, so that your model is tested with data that it has never processed before.
233
802 reads
CURATED FROM
IDEAS CURATED BY
The idea is part of this collection:
Learn more about artificialintelligence with this collection
Understanding machine learning models
Improving data analysis and decision-making
How Google uses logic in machine learning
Related collections
Similar ideas to Testing your model
To develop and manage a production-ready model, you must work through the following stages:
Train an ML model on your data:
Train model
Tune hyper...
At this step, all the requirements have been collected for the solution modelling to proceed.
ML engineers will define the features of the model, taking the following into account:
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates