AI Platform provides tools to upload your trained ML model to the cloud, so that you can send prediction requests to the model.
In order to deploy your trained model on AI Platform, you must save your trained model using the tools provided by your machine learning framework. This involves serializing the information that represents your trained model into a file which you can deploy for prediction in the cloud.
Then you upload the saved model to a Cloud Storage bucket, and create a model resource on AI Platform, specifying the Cloud Storage path to your saved model.
212
714 reads
CURATED FROM
IDEAS CURATED BY
The idea is part of this collection:
Learn more about artificialintelligence with this collection
Understanding machine learning models
Improving data analysis and decision-making
How Google uses logic in machine learning
Related collections
Similar ideas to Host your model in the cloud
To develop and manage a production-ready model, you must work through the following stages:
Train an ML model on your data:
Train model
Tune hyper...
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates