Dataset alignment can also be a challenge for those using foundation models. Pre-training on a large general-purpose dataset is no guarantee that the network will be able to perform a new task on proprietary data. The network may be so lacking in context or biased based on its pre-training, that even fine-tuning may not readily resolve the issue.
Any startup leveraging foundation models in its machine learning efforts should pay close attention to these types of issues.
19
117 reads
CURATED FROM
IDEAS CURATED BY
The idea is part of this collection:
Learn more about startup with this collection
How to analyze churn data and make data-driven decisions
The importance of customer feedback
How to improve customer experience
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates