The Original Discovery - Deepstash
Lifelong Learners

Learn more about personaldevelopment with this collection

How to apply new knowledge in everyday life

Why continuous learning is important

How to find and evaluate sources of knowledge

Lifelong Learners

Discover 74 similar ideas in

It takes just

7 mins to read

The Original Discovery

The Original Discovery

Perepelitsa and his colleagues are dubious that a massless photon could pack a powerful enough punch to melt part of a lead nucleus, which contains 82 protons and 126 neutrons. “It would be like throwing a needle into a bowling ball,” he says.

Instead, he thinks that just before impact, these photons are undergoing a transformation predicted by Paul Dirac.

In 1931, Dirac published a paper predicting a new type of particle. The particle would share the mass of the electron but have the opposite charge. If it collides with an electron, the two will have a chance of annihilating one another.

6

8 reads

MORE IDEAS ON THIS

CERN sees evidence of quark-gluon plasma during collision

CERN sees evidence of quark-gluon plasma during collision

Scientists at the Large Hadron Collider have recently studied how, imbued with enough energy, photons can bounce off of one another like massive particles do. Scientists at the LHC and the Relativistic Heavy Ion Collider have also reported seeing photons colliding and con...

7

77 reads

Conclusion

Conclusion

"We're pushing to the most extremes in fluid dynamics,” Noronha-Hostler says. “Not only do we have something that is moving at the speed of light and at the highest temperatures known to humanity, but it looks like we are going to be able to answer ‘What is the smallest d...

6

6 reads

The Large Light Collider

The Large Light Collider

They went looking for collisions between photons and nuclei, called photonuclear collisions, in data collected during the lead-ion runs at the LHC. These runs have happened in the few weeks just before the LHC’s winter shutdown each year that the LHC has been in operation.

...

6

23 reads

Recognizable Particle-flow

Recognizable Particle-flow

After collecting and analyzing the data, Seidlitz, Perepelitsa and their colleagues saw a particle-flow signature characteristic of a quark-gluon plasma. 

The finding alone is not enough to prove the formation of a quark-gluon plasma, but it’s a first clue. “There are alway...

6

8 reads

Stimulated Quark-Gluon Plasma Formation

Stimulated Quark-Gluon Plasma Formation

Although they have known for years they could produce small amounts of quark-gluon plasma in collisions between heavy ions, this is the first time scientists have reported possible evidence of quark-gluon plasma in the aftermath of a collision between the nucleus of a heavy ion and a mass...

6

23 reads

The Photons Having A Moment

The Photons Having A Moment

When two lead nuclei collide at high energy inside the LHC, the gluons can lose their grip, causing the protons and neutrons to melt and merge into a quark-gluon plasma. The now-free quarks and gluons pull on each other, holding together as the plasma expands and cools. 

Ev...

7

13 reads

The Trigger

The Trigger

Luckily, photonuclear collisions have a special asymmetrical shape due to the momentum differences between the tiny photon and the massive lead ion: “It’s like a truck hitting a trash can,” Seidlitz says. “All the debris from the collision will move in the direction of the truck.”

Seidlitz ...

6

6 reads

A Quantum Transformation

A Quantum Transformation

It was the positron, the first predicted particle of antimatter. In 1932, Caltech physicist Carl Anderson discovered the particle, and later physicists spotted the annihilation process Dirac had predicted as well.

When matter and antimatter meet, th...

6

11 reads

The Smallest Drop

The Smallest Drop

For now, the exact mechanism that may be causing this quark-gluon plasma signature within photonuclear collisions remains a mystery. Whatever is going on, Noronha-Hostler says figuring out these collisions could be an important step in quark-gluon plasma research. 

...

6

5 reads

Bullet Over A Bowling Ball

Bullet Over A Bowling Ball

Perepelitsa and his colleagues suspect that the collisions they’ve observed, in which photons appear to be colliding with lead nuclei and creating a small amount of quark-gluon plasma, are not actually collisions between nuclei and photons. Instead, they’re collisions between nuc...

6

5 reads

A Trigger That Picks Out The Photon-Zapped Lead Ions

A Trigger That Picks Out The Photon-Zapped Lead Ions

During the lead-ion runs at the LHC, nuclei aren’t the only things colliding. Because they have a positive charge, lead nuclei carry strong electromagnetic fields that grow in intensity as they accelerate. Their electromagnetic fields spit out high-energy photons, which can also collide—a fairly ...

6

12 reads

CURATED FROM

CURATED BY

trampinquills

I owe my originality to a technical clusterfuck of emotions driven by angst and my dad's radio.

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving & library

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Personalized recommendations

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates