Max Pooling Layers : These layers reduce the feature map (the size of the features), reduce the computational resources needed and prevents overfitting
Fully Connected Layers : They appear at the end of the CNN, they’re just linear layers which takes the results of the CNN as inputs and outputs the lable
That’s the architecture, but the really amazing part of a CNN are it’s kernels inside it’s convolutional layers! These kernels are only matrixes (basically a bunch of numbers sorted in a box), but they’re able to extract tons of features about the image.
32
231 reads
CURATED FROM
IDEAS CURATED BY
卐 || एकं सत विप्रा बहुधा वदन्ति || Enthusiast || Collection Of Some Best Reads || Decentralizing...
The idea is part of this collection:
Learn more about artificialintelligence with this collection
How to build trust and respect with team members
How to communicate effectively
How to motivate and inspire others
Related collections
Read & Learn
20x Faster
without
deepstash
with
deepstash
with
deepstash
Personalized microlearning
—
100+ Learning Journeys
—
Access to 200,000+ ideas
—
Access to the mobile app
—
Unlimited idea saving
—
—
Unlimited history
—
—
Unlimited listening to ideas
—
—
Downloading & offline access
—
—
Supercharge your mind with one idea per day
Enter your email and spend 1 minute every day to learn something new.
I agree to receive email updates