Responsible AI practices – Google AI - Deepstash

Keep reading for FREE

Responsible AI practices

The development of AI is creating new opportunities to improve the lives of people around the world, from business to healthcare to education.

It is also raising new questions about the best way to build fairness, interpretability, privacy, and security into these systems.

7

36 reads

General recommended practices for AI

Reliable, effective user-centered AI systems should be designed following general best practices for software systems, together with practices that address considerations unique to machine learning.

7

42 reads

Use a human-centred design approach

The way actual users experience your system is essential to assessing the true impact of its predictions, recommendations, and decisions.

  • Design features with appropriate disclosures built-in: clarity and control are crucial to a good user experience.
  • Consider augmentation and assistance.
  • Model potential adverse feedback early in the design process, followed by specific live testing and iteration for a small fraction of traffic before full deployment.
  • Engage with a diverse set of users and use-case scenarios, and incorporate feedback before and throughout project development.

7

19 reads

Identify multiple metrics to assess training and monitoring

The use of several metrics rather than a single one will help you to understand the tradeoffs between different kinds of errors and experiences.

Consider metrics including feedback from user surveys, quantities that track overall system performance and short- and long-term product health (e.g., click-through rate and customer lifetime value, respectively), and false positive and false negative rates sliced across different subgroups.

Ensure that your metrics are appropriate for the context and goals of your system.

7

23 reads

Directly examine your raw data

ML models will reflect the data they are trained on, so analyze your raw data carefully to ensure you understand it.

  • Does your data contain any mistakes (e.g., missing values, incorrect labels)?
  • Is your data sampled in a way that represents your users and real-world settings?
  • Are any features in your model redundant or unnecessary? 
  • If you are using a data label X as a proxy to predict a label Y, in which cases is the gap between X and Y problematic?

7

18 reads

Training-serving skew

The difference between performance during training and performance during serving—is a persistent challenge.

During training, try to identify potential skews and work to address them, including by adjusting your training data or objective function. During the evaluation, continue to try to get evaluation data that is as representative as possible of the deployed setting.

7

18 reads

Understand the limitations of your dataset and model

  • A model trained to detect correlations should not be used to make causal inferences, or imply that it can. 
  • Machine learning models today are largely a reflection of the patterns of their training data.
  • Communicate limitations to users where possible.

7

17 reads

Test, test, test

  • Conduct rigorous unit tests to test each component of the system in isolation.
  • Conduct integration tests to understand how individual ML components interact with other parts of the overall system.
  • Proactively detect input drift by testing the statistics of the inputs to the AI system to make sure they are not changing in unexpected ways.
  • Use a gold standard dataset to test the system and ensure that it continues to behave as expected.
  • Conduct iterative user testing to incorporate a diverse set of users’ needs in the development cycles.
  • Build quality checks into a system.

7

15 reads

Monitor and update the system after deployment

  • Issues will occur: any model of the world is imperfect almost by definition. Build time into your product roadmap to allow you to address issues.
  • Consider both short- and long-term solutions to issues. A simple fix (e.g., blocklisting) may help to solve a problem quickly, but may not be the optimal solution in the long run. Balance short-term simple fixes with longer-term learned solutions.
  • Before updating a deployed model, analyze how the candidate and deployed models differ, and how the update will affect the overall system quality and user experience.

7

16 reads

CURATED BY

anikad

Life Is A Marathon| Life Lover

MORE LIKE THIS

Ready for the next level?

Read Like a Pro

stash-superman-illustration

Explore the World’s

Best Ideas

200,000+ ideas on pretty much any topic. Created by the smartest people around & well-organized so you can explore at will.

An Idea for Everything

Explore the biggest library of insights. And we've infused it with powerful filtering tools so you can easily find what you need.

Knowledge Library

Powerful Saving & Organizational Tools

Save ideas for later reading, for personalized stashes, or for remembering it later.

# Personal Growth

Take Your Ideas

Anywhere

Organize your ideas & listen on the go. And with Pro, there are no limits.

Listen on the go

Just press play and we take care of the words.

Never worry about spotty connections

No Internet access? No problem. Within the mobile app, all your ideas are available, even when offline.

Get Organized with Stashes

Ideas for your next work project? Quotes that inspire you? Put them in the right place so you never lose them.

Join

2 Million Stashers

4.8

Stars

5,740 Reviews

App Store

4.7

Stars

72,690 Reviews

Google Play

samz905

Don’t look further if you love learning new things. A refreshing concept that provides quick ideas for busy thought leaders.

Shankul Varada

Best app ever! You heard it right. This app has helped me get back on my quest to get things done while equipping myself with knowledge everyday.

Sean Green

Great interesting short snippets of informative articles. Highly recommended to anyone who loves information and lacks patience.

Ashley Anthony

This app is LOADED with RELEVANT, HELPFUL, AND EDUCATIONAL material. It is creatively intellectual, yet minimal enough to not overstimulate and create a learning block. I am exceptionally impressed with this app!

Laetitia Berton

I have only been using it for a few days now, but I have found answers to questions I had never consciously formulated, or to problems I face everyday at work or at home. I wish I had found this earlier, highly recommended!

Giovanna Scalzone

Brilliant. It feels fresh and encouraging. So many interesting pieces of information that are just enough to absorb and apply. So happy I found this.

Ghazala Begum

Even five minutes a day will improve your thinking. I've come across new ideas and learnt to improve existing ways to become more motivated, confident and happier.

Jamyson Haug

Great for quick bits of information and interesting ideas around whatever topics you are interested in. Visually, it looks great as well.

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving & library

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Personalized recommendations

FAQ

Claim Your Limited Offer

Get Deepstash Pro

BLACK FRIDAY

75% OFF | 1-Year Pro Subscription

Claim Offer