Wave-Particle Duality - Deepstash

Bite-sized knowledge

to upgrade

your career

Ideas from books, articles & podcasts.

Wave-Particle Duality

In quantum, waves can behave as particles and particles can behave as waves, resulting from several unique properties of quantum mechanics: discreteness, superposition, and interference.

Electrons, in fact, aren’t the only objects that are described by wave-particle duality. Recently there was a case study to determine how large an object can be to still be quantum, and it turns out that C₆₀ or 60 atoms of Carbon was the biggest quantum object through this study to be explained by wave-particle duality.

STASHED IN:

6

MORE IDEAS FROM THE SAME ARTICLE

Due to the complexities of quantum mechanics, several theories have been theorized by different physicists.

This begs the question, what is the result from sending quantum objects through the two slits? Will it turn out to show the results of a particle or a wave? To test this, physicists sent electrons through the two slits to test this, and what they found out was each electron made a discrete spot o...

When two waves have peaks and valleys at the same place, they add up to create constructive interference. On the other hand, when the peaks and valleys are at opposite places, they cancel out to create destructive interference.

In our day-to-day lives, we see particles all the time in objects like balls, balloons, even airplanes as an object made up of particles or atoms. When holding one of these objects, they each have their own mass, their own defined discrete position or location, and a velocity when moving.

To determine if a quantum object acts as a wave or particle, physicists have conducted the double-slit experiment to come to a conclusion. This experiment was set up using two walls, one with two slits spaced closely together and another wall right behind it.

To answer the title, it is important to understand the behaviors of objects in the classical world. The two possible objects are waves and particles, through which we can explain classical physics. So should we use the rules of waves or particles to explain the properties of quantum objects?

Waves can be easily thought of through as a few examples: water, light, electromagnetic, and sound. Two main properties that describe waves are velocity and interference. For instance, when being present during a storm, the wave of light (lightning) travels at a higher velocity than the sound (th...

When sending waves through the slits, we see an interference pattern, which is a pattern of bright and dark lines. These lines show constructive and destructive interference through adding up to create bright lines and canceling out to create dark lines. This also can be thought of as some waves ...

Particles Result:

Lastly, there is the De Broglie-Bohm Interpretation, or the Pilot Wave Theory, which defines wave-particle duality as the wave and particle parts of the quantum object coexisting, similar to a droplet of water bouncing on a puddle.

3 Reactions

Comment

It's time to

READ

LIKE

A PRO!

Jump-start your

reading habits

, gather your

knowledge

,

remember what you read

and stay ahead of the crowd!

Takes just 5 minutes a day.


TRY THE DEEPSTASH APP

+2M Installs

4.7 App Score