5. Bernstein-Vazirani Algorithm - Deepstash
Ask for a Raise

Learn more about personaldevelopment with this collection

How to close the deal

How to handle objections

How to present your value to your employer

Ask for a Raise

Discover 64 similar ideas in

It takes just

9 mins to read

5. Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Algorithm was invented by Ethan Bernstein and Umesh Vazirani in 1992. It is a restricted version of the Deutsch–Jozsa algorithm.

The algorithm was created to solve a is

So, let’s just say that we are given a box . Hidden in the box is a secret number. This “secret number” is represented by six bits made up of 0’s and 1’s. We need to figure out what the “secret number” is.

Classically, a computer would find it most efficient to calculate the “secret number” by evaluating the function n times, where x = 2^i and i is the summation of 0, 1, … n-1.

53

167 reads

MORE IDEAS ON THIS

Entanglement

Entanglement is when a pair or group of quantum systems are strongly correlated, giving them the ability to be perfectly in unison, no matter how far apart they are. This means that quantum computers only need to measure 1 qubit and to figure out the value of the other qubit in the pair instantan...

53

340 reads

Continuing

Now imagine if you could find out what the secret number is in one try, no matter its size. That’s exactly what running the Bernstein-Vazirani algorithm on a quantum computer allows you to do.

51

185 reads

...

Certain algorithms take much longer on classical computers that obey the laws of macro physics because their hardware may not be able to carry out some of the steps efficiently.

51

260 reads

Continuing

Unlike the previous quantum algorithms mentioned, Grover’s algorithm only provides a quadratic speedup in evaluation time for unstructured searches, compared to their exponential speedup. Still, the amplitude amplification trick employed in Grover’s algorithm is extremely useful when trying to ob...

51

173 reads

3. Deutsch-Jozsa Algorithm

The Deutsch-Jozsa Algorithm was to showcase how quantum algorithms can be exponentially faster than any possible deterministic classical algorithm.

The algorithm itself doesn’t provide much practical use besides being specifically designed to be easy for a quantum algorithm and hard for any...

52

195 reads

Superposition

When a quantum system is in superposition, it can be a 0 or a 1 or a combination of both, at the same time. This allows a quantum computer to process information at a significantly higher rate than classical computers.

For example, 4 regular bits can only represent 1 of the total 16 combin...

52

392 reads

4. Grover’s Algorithm

Lov Grover created this algorithm to solve the problem of an unstructured search. It can find the unique input to a black box function that produces a particular output value, using just O(sqrt N) evaluation of the function, N being the function’s domain.

In other words, let's say we had a ...

53

169 reads

...

However, this scenario is unlikely to happen in the near future because we still have a lot more progress to make in lowering quantum noise and quantum decoherence in current quantum computers.

Still, Shor’s algorithm is an extremely efficient project in giving you a hands-on experience wit...

51

218 reads

Quantum Algorithms

An algorithm is essentially a series of steps to solve a problem. However, these steps are limited by the hardware on which the algorithm is being run on.

For example,let's say we have written down the steps needed to find the derivative of a polynomial function. If we gave these d...

51

274 reads

1. Simon’s Algorithm

Simon’s problem was one of the first computational problems to prove that a quantum algorithm could solve a problem exponentially faster than a classical algorithm.

This algorithm, although not providing much practical value on its own, inspired the Quantum Fourier Transforms in Shor’s algo...

53

267 reads

2. Shor’s Algorithm

Shor’s algorithm is by far one of the most famous quantum algorithms of all time, as it can factor integers in polynomial time. It was invented in 1994 by Peter Shor to solve the problem of finding the prime factors of a given number, N .

Shor’s algorithm even has the potential to ...

54

230 reads

...

the experience/knowledge needed. But, if we gave these instructions to a kindergartner, they would be very lost and wouldn’t arrive at an answer. There would probably just be scribbles on the page.

In this example, the steps to calculate a derivative represents an algorithm, and the various...

51

243 reads

What is Quantum Computing?

What is Quantum Computing?

Quantum Computing is a form of computing that takes advantage of quantum mechanics to process information exponentially faster than classical computers.

Classical computers use classical bits which can consist of either a 0 or a 1 to encode information.Quantum computers,on ...

53

477 reads

CURATED FROM

CURATED BY

vedarham

 卐 || एकं सत विप्रा बहुधा वदन्ति || Enthusiast || Collection Of Some Best Reads || Decentralizing...

Related collections

More like this

Magnetic quantum Numbers (mℓ)

Magnetic quantum Numbers (mℓ)

Specifie the orientation in space of an orbital of a given energy (n) and shape (l). This number divides the subshell into individual orbitals which hold the electrons; there are 2l+1 orbitals in each subshell.

Every orbital capacity is 2 electrons

Magnetic ...

Mathematics of motivation

When Ivan Pavlov and his dogs led to the discovery of learned behaviour through repeated exposure, and Edward Thorndike discovered the Law of Effect that stated that rewarded behaviours tended to increase, many psychologists were impelled to separate psychology from armchair introspection and

Read & Learn

20x Faster

without
deepstash

with
deepstash

with

deepstash

Access to 200,000+ ideas

Access to the mobile app

Unlimited idea saving & library

Unlimited history

Unlimited listening to ideas

Downloading & offline access

Personalized recommendations

Supercharge your mind with one idea per day

Enter your email and spend 1 minute every day to learn something new.

Email

I agree to receive email updates